591 reflections
50 parameters
H atoms not located
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1209 P)^{2}\right.$
$+188.5222 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U^{i j} a^{i} a^{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
V1 \dagger	1/4	1/4	1/4	0.006 (3)
Mo	0.13794 (3)	0.24552 (4)	0.13794 (3)	0.0313 (6)
01	0.0989 (3)	0.1830 (2)	0.1830 (2)	0.0278 (16)
O2	0.2100 (2)	0.2100 (2)	0.2100 (2)	0.012 (2)
03	0.1169 (3)	0.3009 (2)	0.1991 (2)	0.0244 (15)
04	0.0860 (2)	0.2591 (3)	0.0860 (2)	0.0372 (18)
Rbl \ddagger	0	0.2061 (3)	0	0.0678 (19)
Rb2§	0.1498 (2)	0.8502 (2)	1/2	0.065 (2)
Rb39	0	0	0	0.070
Rb4 $\dagger \dagger$	0	1/2	0	0.070
OWI $\ddagger \ddagger$	0.2427 (5)	0.2573 (5)	0	0.016 (4)
OW2	0	0.1271 (5)	0.1271 (5)	0.068 (4)
OW3	0	0.3366 (18)	0	0.138 (12)
OW4§§	0.0735 (13)	0.4265 (13)	0.0735 (13)	0.15 (3)

\dagger Site occupancy $=0.62$ (3). \ddagger Site occupancy $=0.698$ (12). § Site occupancy $=0.363$ (9). I Site occupancy $=0.11$ (2). $\dagger \dagger$ Site occupancy $=0.07$ (2). $\quad \ddagger \ddagger$ Site occupancy $=0.50 . \quad \S \S$ Site occupancy $=$ 0.74 (8).

All metal atoms and the O atoms in the Keggin-type cluster were refined with anisotropic displacement parameters using a 'rigid-bond' restraint to $U_{i j}$ of two bonded atoms (Rollett, 1970), implemented as the DELU instruction in SHELXL97 (Sheldrick, 1997). All water O atoms were refined isotropically. OW1 was originally located at the $24 d$ position but was split to a half-occupied $48 h$ position. OW2 and OW3 are fully occupied, while the occupancy of OW4 decreased significantly during the refinement. Rb3 and Rb4 are located in large voids at $4 a$ and $4 b$. The isotropic displacement parameters $U_{\text {iso }}$ of Rb 3 and Rb 4 were fixed to 0.07 and the occupancy was refined for both atoms. The largest residual densities are located at $1.9 \AA$ from Rb4 and $0.5 \AA$ from OW1.

Data collection: EXPOSE (Stoe, 1997). Cell refinement: PIRUM (Version 930101; Werner, 1969). Data reduction: INTEGRATE (Stoe, 1997). Program(s) used to solve structure: SHELXS 97 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL97. Molecular graphics: DIAMOND (Bergerhoff, 1996).

We would like to thank Professor Sven Lidin for valuable guidance and PhD student Kristina Lycknert for helping us with the NMR measurements. This work was supported by a grant from the Swedish Natural Science Research Council.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OS1070). Services for accessing these data are described at the back of the journal.

References

Bergerhoff, G. (1996). DIAMOND. Visual Crystal Structure Information System. Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.

Bjömberg, A. \& Hedman, B. (1980). Acta Crvst. B36, 1018-1022. Dean, G. A. (1961). Can. J. Chem. 39, 1174-1183.
Jeannin, Y., Launay, J. P. \& Seid Sedjadi, M. A. (1980). Inorg. Chem. 19. 2933-2935.

Keggin, J. F. (1933). Nature, 132, 351.
Rollett, J. S. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 167-181. Copenhagen: Munksgaard.
Sheldrick, G. M. (1990). Acta Crvst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crustal Structures. University of Göttingen, Germany.
Stoe \& Cie (1997). X-RED (Version 1.09), EXPOSE (Version 2.87) and INTEGRATE (Version 2.87). Stoe IPDS, Darmstadt, Germany.
Werner, P.-E. (1969). Ark. Kemi. 31, 513-516.
Zhang, S. W., Huang, G. Q., Wei, Y. G., Shao, M. C. \& Tang, Y. Q. (1993). Acta Cryst. C49, 1446-1448.

Acta Cryst. (1999). C55, 1976-1978

$\mathrm{Ba}_{3} \mathrm{TaAs}_{3} \mathrm{O}$ displaying the distorted tetrahedral $\mathrm{TaAs}_{3} \mathrm{O}^{6-}$ anion

Gaëlle Derrien, Laure Moncondut, Monique Tllard and Claude Belin

Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques, ESA 5072 CC15, Université de Montpellier II, Sciences et Techniques du Languedoc, 2 Place Eugène Bataillon, 34095 Montpellier CEDEX 5, France. E-mail: mtillard@univ-montp2.fr
(Received 23 June 1999; accepted 23 July 1999)

Abstract

The orthorhombic cell of tribarium tantalum arsenate, $\mathrm{Ba}_{3} \mathrm{TaAs}_{3} \mathrm{O}$, contains pseudo-tetrahedral $\mathrm{TaAs}_{3} \mathrm{O}^{6-}$ anions surrounded by Ba^{2+} cations. This forms a threedimensional network of interconnected trigonal prisms. The compound is isostructural with $\mathrm{Ba}_{3} \mathrm{NbAs}_{3} \mathrm{O}$ and $\mathrm{Eu}_{3} \mathrm{TaAs}_{3} \mathrm{O}$.

Comment

The quaternary phase $\mathrm{Ba}_{3} \mathrm{TaAs}_{3} \mathrm{O}$ (orthorhombic Pnma) is isostructural with the compounds $\mathrm{Ba}_{3} \mathrm{NbAs}_{3} \mathrm{O}$ (Monconduit et al., 1999) and $\mathrm{Eu}_{3} \mathrm{TaAs}_{3} \mathrm{O}$ (Wang et al., 1980). The unit cell contains four $\mathrm{TaAs}_{3} \mathrm{O}^{6-}$ anions stacked above each other along \mathbf{b}, with their $\mathrm{Ta}-\mathrm{O}$ bonds parallel to the a axis. The As atoms, with surrounding Ba atoms, form the base of a pseudotrigonal prism centered by the $\mathrm{Ta}-\mathrm{O}$ bond. The anionic $\mathrm{TaAs}_{3} \mathrm{O}^{6-}$ unit, with 32 valence electrons, is isoelectronic with more or less distorted tetrahedral $M L_{4}^{n-}$ an-

Fig. 1. Representation of the orthorhombic unit cell of $\mathrm{Ba}_{3} \mathrm{TaAs}_{3} \mathrm{O}$. The $\mathrm{TaAs}_{3} \mathrm{O}^{6-}$ anion is shown inside the pseudo-trigonal prism formed by As and Ba atoms around the $\mathrm{Ta}-\mathrm{O}$ bond.
ions such as InTe_{4}^{5-} (Sportouch et al., 1994), ClO_{4}^{-}, $\mathrm{PO}_{4}^{3-}, \mathrm{SO}_{4}^{2-}, \mathrm{S}_{2} \mathrm{O}_{3}^{2-}, \mathrm{Sb}_{2} \mathrm{O}_{3}^{4-}$ (Tillard et al., 1999) and $\mathrm{NbAs}_{3} \mathrm{O}^{6-}$. In the present compound, distortion of the $\mathrm{TaAs}_{3} \mathrm{O}^{6-}$ anion from $C_{3 v}$, geometry is quantified by two As-Ta-As angles of 109.83 (5) ${ }^{\circ}$ and one of $121.97(8)^{\circ}$, and is comparable to that observed in $\mathrm{Eu}_{3} \mathrm{TaAs}_{3} \mathrm{O}$ [two As-Ta-As angles of $109.14(4)^{\circ}$ and one of $\left.124.11(7)^{\circ}\right]$. For comparison, in the $\mathrm{NbAs}_{3} \mathrm{O}^{6-}$ anion ($\mathrm{Ba}_{3} \mathrm{NbAs}_{3} \mathrm{O}$), two $\mathrm{As}-\mathrm{Nb}-\mathrm{As}$ angles are of 109.64 (4) ${ }^{\circ}$ and the other is of 122.14 (6) ${ }^{\circ}$. The $\mathrm{Ta}-\mathrm{O}$ bond length of 1.86 (1) \AA in $\mathrm{Ba}_{3} \mathrm{TaAs}_{3} \mathrm{O}$ [1.87 (1) \AA in $\mathrm{Eu}_{3} \mathrm{TaAs}_{3} \mathrm{O}$] is shorter than the Pauling single-bond covalent radii of the elements ($2.08 \AA$). Similar to $\mathrm{Nb}-\mathrm{O}$, Raman spectroscopy indicates that the $\mathrm{Ta}-\mathrm{O}$ bond has no double-bond character. In the Raman spectrum recorded at room temperature, the $\nu_{s}(\mathrm{Ta}-\mathrm{O})$ frequency at $645 \mathrm{~cm}^{-1}$ is found at nearly the same position as the $\nu_{s}(\mathrm{Nb}-\mathrm{O})$ frequency and the very sharp principal line observed at $256 \mathrm{~cm}^{-1}$ is assigned to symmetric $\nu_{s}(\mathrm{Ta}$-As) stretching. The Ta-As bonds [2.458 (2) and $2.464(2) \AA(\times 2)]$ compare well with corresponding Ta -As bonds in $\mathrm{Eu}_{3} \mathrm{TaAs}_{3} \mathrm{O}$ [2.439 (2) and 2.458 (1) A $(\times 2)$] and $\mathrm{Nb}-A s$ bonds in $\mathrm{Ba}_{3} \mathrm{NbAs}_{3} \mathrm{O}$ [2.459 (2) and $2.464(1) \AA(\times 2)]$.

Experimental

With the aim of obtaining the quaternary phase $\mathrm{Ba}_{3} \mathrm{TaAs}_{3} \mathrm{O}$, $\mathrm{BaO}, \mathrm{As}, \mathrm{Ta}$ and Ba (ratio 1:3:1:2) were inserted in a tantalum reactor weld-sealed under argon. The tantalum reactor was protected in an inox container also weld-sealed under argon. The mixture was heated to $1323 \mathrm{~K}\left(50 \mathrm{~K} \mathrm{~h}^{-1}\right)$ for 10 h , maintained at 1173 K for 100 h and finally cooled at a rate of $150 \mathrm{Kh}^{-1}$. The product of the reaction was quite homogeneous, had a metallic luster and was very air sensitive. Elemental analyses (SEM) of several small crushed pieces
confirmed the presence of Ba, Ta and As in the atomic ratio 3:1:3. Crystalline pieces were selected under a microscope inside a glove-box filled with purified argon. Crystallographic parameters were first determined by oscillation and Weissenberg techniques. The best diffracting crystal was used for accurate determination of the cell parameters. A single crystal ($<1 \mathrm{~mm}$) was sealed in a Lindemann glass capillary under dry argon and analyzed at room temperature using confocal laser Raman microspectrometry (Dhamelincourt et al., 1993) with a Labram-Dilor spectrometer. The BX40 microscope objectives, which are high numerical aperture (NA) optics, are able to focus the laser beam ($\mathrm{He} / \mathrm{Ne}: 632.817 \mathrm{~nm}, 20 \mathrm{~mW}$) into a very small volume and to collect, under a wide angle, the light scattered by this volume.

Crystal data

$\mathrm{Ba}_{3} \mathrm{TaAs}_{3} \mathrm{O}$
$M_{r}=833.73$
Orthorhombic
Pnma
$a=6.722(2) \AA$
$b=11.088$ (2) \AA
$c=13.475$ (4) \AA
$V=1004.3(5) \AA^{3}$
$Z=4$
$D_{x}=5.514 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega-\theta$ scans
Absorption correction:
numerical (SHELX76;
Sheldrick, 1976)
$T_{\text {min }}=0.279, T_{\text {max }}=0.469$
1533 measured reflections
1533 independent reflections
957 reflections with
$I>2 \sigma(I)$

Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 25 reflections
$\theta=11.06-18.45^{\circ}$
$\mu=32.197 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Parallelepiped
$0.20 \times 0.08 \times 0.07 \mathrm{~mm}$
Silver metallic luster
$\theta_{\text {max }}=29.96^{\circ}$
$h=0 \rightarrow 9$
$k=0 \rightarrow 15$
$l=0 \rightarrow 18$
3 standard reflections every 100 reflections intensity decay: $<3 \%$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.130$
$S=0.952$
1533 reflections
44 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0614 P)^{2}\right]$ where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=5.547 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-3.847 \mathrm{e}^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 1997a)
Extinction coefficient: 2.1 (7) $\times 10^{-4}$

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\text {eq }}=(1 / 3) \Sigma_{i} \Sigma_{j} U^{i j} a^{i} a^{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Bal	0.22205 (19)	3/4	0.37368 (9)	0.0111 (3)
Ba 2	0.25836 (13)	0.95429 (8)	0.63202 (6)	0.0113 (2)
Ta	0.66206 (12)	3/4	0.54470 (6)	0.0067 (2)
As1	0.2338 (2)	0.44439 (14)	0.38341 (11)	0.0122 (3)
As2	0.2240 (3)	3/4	0.13505 (15)	0.0104 (4)
0	0.386 (2)	3/4	0.5541 (10)	0.008 (2)

Table 2. Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$

$\mathrm{Bal}-\mathrm{O}$	2.669 (14)	Ba2-As1 ${ }^{\text {iv }}$	3.316 (2)
Bal-As2	3.216 (3)	$\mathrm{Ba} 2-\mathrm{As} 1^{\text {in }}$	3.390 (2)
Bal-As 2^{1}	3.350 (3)	Ba 2 - $\mathrm{As}^{\text {v }}$	3.422 (2)
Bal-As2 ${ }^{\text {ii }}$	3.376 (3)	$\mathrm{Ba} 2-\mathrm{As} 1^{\text {v1 }}$	3.537 (2)
Bal-Asl ($\times 2$)	3.3920 (17)	Ta-O	1.861 (14)
$\mathrm{Ba} 2-\mathrm{O}$	2.640 (7)	Ta-As2 ${ }^{11}(\times 2)$	2.458 (2)
$\mathrm{Ba} 2-\mathrm{As} 2{ }^{\text {iii }}$	3.2812 (11)	Ta-AsI ${ }^{\text {² }}$	2.4647 (16
$\mathrm{O}-\mathrm{Ta}-\mathrm{As} 2{ }^{\text {ii }}$	103.7 (4)	$\mathrm{Ta}-\mathrm{O}-\mathrm{Ba} 2$	110.6 (3)
O-Ta-As1 ${ }^{\text {V }}$	104.87 (19)	$\mathrm{Ba} 2{ }^{\text {vi }}-\mathrm{O}-\mathrm{Ba} 2$	118.2 (5)
As $2^{1 i}$-Ta-Asl ${ }^{\text {v }}$	109.83 (5)	Ta-O-Bal	110.5 (6)
Asl ${ }^{2}$-Ta-Asl ${ }^{\text {vii }}$	121.97 (8)	Ba2-O-Bal	103.2 (3)

Symmetry codes: (i) $x-\frac{1}{2}, \frac{3}{2}-y, \frac{1}{2}-z$; (ii) $\frac{1}{2}+x, \frac{3}{2}-y, \frac{1}{2}-z$; (iii) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}+z$; (iv) $-x, \frac{1}{2}+y, 1-z ;$ (v) $1-x, \frac{1}{2}+y, 1-z ;$ (vi) $x, \frac{3}{2}-y, z ;$ (vii) $1-x, 1-y, 1-z$.
In the final difference Fourier map, the highest electron-density peak was found $0.8 \AA$ from the Ta atom and the deepest hole was found $0.9 \AA$ from the Bal atom.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: local program. Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997b). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a). Molecular graphics: ATOMS (Dowty, 1993) and ORTEPII (Johnson, 1976).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1254). Services for accessing these data are described at the back of the journal.

References

Dhamelincourt, P., Barbillat, J. \& Delhaye, M. (1993). Spectrosc. Eur. 5, 16-26.
Dowty, E. (1993). ATOMS. A Computer Program for Displaying Atomic Structures. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Enraf-Nonius (1989). CAD-4 Software. Version 5. Enraf-Nonius, Delft, the Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Monconduit, L., Tillard, M., Favier, F. \& Belin, C. (1999). J. Alloys Compds, 284, 124-127.

Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. University of Cambridge, England.
Sheldrick, G. M. (1997a). SHELXL97. Program for the Refinement of Crustal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXS97. Program for the Solution of Crustal Structures. University of Göttingen, Germany.
Sportouch, S., Belin, C. \& Tillard-Charbonnel, M. (1994). Acta Cryst. C50, 1861-1862.
Tillard, M., Monconduit, L., Traber, B. \& Belin, C. (1999). Acta Cryst. C55, 833-835.
Wang, Y.. Calvert. L. D., Smart. M. L. \& Taylor, J. B. (1980). Acta Cryst. B36, 131-133.

Acta Cryst. (1999). C55, 1978-1980

$\mathrm{Na}_{2} \mathrm{Ca}_{3} \mathrm{Ta}_{2} \mathrm{O}_{9}$ with a simple stacking of oxygen triangular nets

Hisanori Yamane, ${ }^{a}$ Hiroki Takahashi, ${ }^{a}$ Takashi
Kajiwara ${ }^{b}$ and Masahiko Shimada ${ }^{a}$
${ }^{a}$ Institute for Advanced Materials Processing, Tohoku
University, 2-1-1 Katahira, Sendai 980-8577, Japan, and
${ }^{b}$ Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan. E-mail:
yamane@ibis.iamp.tohoku.ac.jp

(Received 24 June 1999; accepted 2 August 1999)

Abstract

The crystal structure of the title quaternary oxide, disodium tricalcium ditantalum nonaoxide, has a distorted simple hexagonal packing of the O atoms. The Na, Ca and Ta atoms are positioned in oxygen trigonal prisms. Two oxygen prisms containing Ta atoms constitute facesharing prisms of $\left[\mathrm{Ta}_{2} \mathrm{O}_{9}\right]^{8-}$.

Comment

The crystal structure of oxides has traditionally been described with closest packing of the oxide ions, such as hexagonal closest packing ($a b$), cubic closest packing $(a b c)$ and their combinations. The structure of the new compound $\mathrm{Na}_{2} \mathrm{Ca}_{3} \mathrm{Ta}_{2} \mathrm{O}_{9}$ is, however, based on a simple stacking of oxygen triangular nets with aaa. All other metal atoms occupy the trigonal prism sites in the sequence $-\mathrm{Na}-\mathrm{Ta}-\mathrm{Ta}-\mathrm{Na}-($ vacant)-Ca1-Ca2-Cal-(vacant)- along the c axis (Table 1). As shown in Fig. 1, the triangles of O atoms twist a little and expand or shrink depending on the other atoms in the prisms. Trigonal prismatic coordinations along the c axis can be seen in detail in Fig. 2.

